
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 12, DECEMBER 2007 1303

Optimization of Pattern Matching Circuits for
Regular Expression on FPGA

Cheng-Hung Lin, Student Member, IEEE, Chih-Tsun Huang, Member, IEEE, Chang-Ping Jiang, and
Shih-Chieh Chang, Member, IEEE

Abstract—Regular expressions are widely used in the network in-
trusion detection system (NIDS) to represent attack patterns. Pre-
viously, many hardware architectures have been proposed to accel-
erate regular expression matching using field-programmable gate
array (FPGA) because FPGAs allow updating of new attack pat-
terns. Because of the increasing number of attacks, we need to ac-
commodate a large number of regular expressions on FPGAs. Al-
though the minimization of logic equations has been studied inten-
sively in the area of computer-aided design (CAD), the minimiza-
tion of multiple regular expressions has been largely neglected. This
paper presents a novel sharing architecture allowing our algorithm
to extract and share common subregular expressions. Experimental
results show that our sharing scheme significantly reduces the area
of pattern matching circuits for regular expression.

Index Terms—Finite automata, field-programmable gate array
(FPGA), intrusion detection, pattern matching.

I. INTRODUCTION

REGULAR expressions are widely used in the network in-
trusion detection system (NIDS) to represent attack pat-

terns. The NIDS is used to recognize and detect network attacks
that general firewalls cannot find, especially in the application
layer. As soon as any malicious packet is identified to contain
an attack pattern, the NIDS notifies the system and takes ap-
propriate actions. Due to the rapid increase of network attacks
and data traffic, traditional software-based NIDS, which sequen-
tially matches input packets against attack patterns, will become
inadequate for networking needs due to its slowness.

In contrast to software-based NIDS, many studies proposed
hardware architectures for accelerating attack detection. These
hardware architectures are mostly implemented on field-pro-
grammable gate array (FPGA) because FPGAs allows updating
for new attack patterns. Sidhu et al. [1] proposed to construct a
nondeterministic finite automaton (NFA) from a regular expres-
sion to perform string matching. Hutchings et al. [2] developed
a module generator that shared common prefixes to reduce
the circuit area on FPGA. Clark et al. [3] made excellent area
and throughput by adding predecoded wide parallel inputs to
traditional NFA implementations. Cho et al. [5] compressed the

Manuscript received April 4, 2006; revised October 20, 2006. This
work was supported by the Ministry of Economic Affairs of Taiwan under
96-EC-17-A-01-S1-038.

C.-H. Lin, C.-T. Huang, and S.-C. Chang are with the Department of
Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan,
R.O.C. (e-mail: brucelin@nthucad.cs.nthu.edu.tw; cthuang@cs.nthu.edu.tw;
scchang@cs.nthu.edu.tw).

C.-P. Jiang is with SpringSoft, Inc., Hsinchu 30013, Taiwan, R.O.C. (e-mail:
flat@nthucad.cs.nthu.edu.tw).

Digital Object Identifier 10.1109/TVLSI.2007.909801

hardware size by reusing the subcomponents of reconfigurable
discrete logic filter. Baker et al. [7] presented a predecoded
shift-and-compare architecture to reduce the area. In contrast to
NFA approaches, a content matching server [9] was developed to
automatically generate deterministic finite automatons (DFAs)
to search for pattern matching. Baker et al. [10] proposed a
novel linear-array string matching architecture providing better
scalability and reconfiguration, and more hardware utilization.

One of the main challenges of hardware implementation
is to accommodate a large number of regular expressions to
FPGAs. Most previous works proposed novel architectures that
translated each regular expression pattern to one circuit module.
Then, payloads are broadcasted to the multiple regular expres-
sion circuits to detect attacks. However, one-to-one hardware
implementation of regular expressions can lead to cost-ineffi-
cient designs that cannot deal with the ever-increasing number
of attacks. Therefore, it is important to develop a new method-
ology to minimize the circuit area of the large number of regular
expressions. Although the minimization of logic equations has
been studied intensively in the area of computer-aided design
(CAD), there is very little research in the minimization of
multiple regular expressions.

The following example illustrates the difficulty of min-
imizing regular expressions. Consider two simple regular
expression patterns, “PassWinDirUserGate” and “PassSysDir-
NetGate.” Fig. 1 shows a simplified regular expression circuit
where the top five concatenated blocks are used to match the
first pattern and the bottom five concatenated blocks are used to
match the second pattern. Each block compares a substring and
outputs a logical high once the substring matches the desired
pattern. For example, the first block (highlighted) compares
the pattern “Pass.” Once the first block matches the substring
“Pass,” it outputs a logical high and activates the successive
block by triggering the control signal “en.” One of the powerful
techniques to reduce the area is to perform circuit sharing. The
subexpression “Pass” in the front position of the regular expres-
sion is called the prefix. It is easy to find out that both patterns
have common prefixes “Pass.” Therefore, it can be shared to
reduce the area [2]. However, there exist more opportunities
in sharing common subexpressions in the middle position, the
infixes, and the common subexpressions in the tail position,
i.e., the suffixes. On the other hand, sharing common infix and
suffix requires much more complex consideration. Consider
the same example in Fig. 2. Although these two patterns have
a common infix “Dir,” the corresponding hardware blocks
cannot be shared directly as shown in Fig. 3. Because the block
“Dir” will trigger both the block “User” and block “Net,” the

1063-8210/$25.00 © 2007 IEEE

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 7, 2008 at 23:38 from IEEE Xplore. Restrictions apply.

1304 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 12, DECEMBER 2007

Fig. 1. Original circuits.

Fig. 2. Sharing common prefix subexpressions.

Fig. 3. Erroneous implementation to share common infix “Dir.”

string “PassSysDirUserGate” may be mistaken as a match at
the output of the upper blocks, i.e., the match1 signal. The
erroneous result is so-called the “false positive.”

In this paper, we propose a novel sharing architecture which
allows our algorithm to extract and share as many common
subregular expressions as possible. Additionally, in order to
construct the regular expression patterns of Snort [11] and from
the industry company, Trend Micro, we develop five basic NFA
components to support Perl-compatible regular expressions
(PCRE). Furthermore, we integrate the predecoding approach
proposed by Clark [3] to our algorithm, called the integra-
tion approach. We replace the distributed comparators with
8-to-256 character decoders. The experimental results show
that the integration approach can achieve an average of 28%
in the area reduction on the Snort rule sets and 38% on the
patterns from Trend Micro. Besides, although our approach
is aimed to optimize the area on FPGA, the circuit delay is
also improved because our algorithm can reduce the fanout
load of inputs and thus the predecoding approach can alleviate
its routing complexity. The integration approach achieves an
average of 22% in delay reduction on the Snort rule sets and
22% on the Trend Micro rule sets. The results show that our
approach is very efficient when combined with the predecoding
approach for the area and timing optimization.

This paper is organized as follows. Section II discusses the
previous works. Section III introduces the regular expressions
for attacks’ description. In Section IV, we present our sharing
architecture. Section V demonstrates the NFA hardware im-
plementation and Section VI discusses our regular expression

module generator. Finally, Sections VII and VIII give the ex-
perimental results and conclusions, respectively.

II. PREVIOUS WORKS

In this section, we review several previous works in this area.
Sidhu et al. [1] first proposed a simple and fast algorithm to
construct an NFA for a given regular expression and used it to
process text characters. Subsequently, Hutchings et al. [2] im-
plemented a module generator that can extract patterns form the
Snort rule sets, and generate regular expression to match all the
extracted patterns.

In order to reduce the area, many strategies are proposed for
reducing the redundancy through predesign optimization. Clark
et al. [3] proposed the predecoding approach which replaced
the distributed comparators with a shared 8-to-256 character de-
coder and extended the approach to a scalable bandwidth system
[4]. By adding predecoded wide parallel inputs to traditional
NFA implementation, the area can be effectively reduced. Cho
et al. [5] proposed a high-speed rule-based multilayer inspection
firewall system by large, pipelined comparators, and then pre-
sented a methodology which reduced the number of compara-
tors by finding identical alignments between other unattached
patterns [6]. The preprocessing takes advantage of the shared
alignments and allows for the 32-bits architecture. Baker et al.
[7] presented a methodology which integrated rule-based graph
creation and min-cut partitioning, allowing efficient multibyte
comparisons and partial matches, and then adopted the prede-
coded shift-and-compare architecture to reduce comparator size
and routing [8]. Besides, J. Moscola et al. [16] presented an im-
plementation of a high-performance network application layer
parser in FPGA, of which the 8-to-256 decoder is applied to pat-
tern matcher for decreasing the routing resource. Sourdis et al.
[12] adopted a scalable, low-latency architecture by employing
full-width comparators for the search.

Except for the NFA approach, Moscola et al. [9] proposed
a multigigabyte pattern matching system by demultiplexing a
TCP/IP stream into multiple substreams and spreading the load
over several parallel matching units constructed by the DFA.
Based on Knuth–Morris–Pratt (KMP) algorithm, Baker et al.
[10] proposed a linear-array string matching architecture using a
buffer with two-comparators that provided instantaneous recon-
figuration and better scalability. Cho et al. [17] presented a high
performance pattern matching co-processor, a RAM-based de-
sign which stores the state transitions in programmable RAMs.

Instead of matching fixed characters per cycle, the CAM-
based solution can match the entire pattern at once when the
pattern is shifted past the CAM. Gokhale et al. [13] proposed a
CAM-based solution to perform parallel search at a high speed.
Sourdis et al. [14] advocated the use of predecoding for CAM-
based pattern matching to reduce the area. Besides, Yu et al.
[15] presented a ternary content addressable memory (TCAM)-
based multiple-pattern matching which can handle complex pat-
terns, correlated patterns, and patterns with negation. However,
as compared with standard memories, CAM is costly in terms
of design complexity, area overhead and power consumption.

A more recent hash-based approach was proposed to utilize
Bloom filter for deep packet inspection. Dharmapurikar et al.
[18] proposed a hashing-table lookup mechanism utilizing

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 7, 2008 at 23:38 from IEEE Xplore. Restrictions apply.

LIN et al.: OPTIMIZATION OF PATTERN MATCHING CIRCUITS FOR REGULAR EXPRESSION ON FPGA 1305

parallel bloom filters to enable a large number of fixed-length
strings to be scanned in hardware. Lockwood et al. [19] pro-
posed an intelligent gateway based on Bloom filter that provides
Internet worm and virus protection in both local and wide area
networks.

III. REGULAR EXPRESSIONS FOR ATTACKS’ DESCRIPTION

Regular expressions are a common way to express attack pat-
terns. In Snort, two types of regular expression are used to de-
scribe attack patterns. The first type defines the exact string
patterns such as Backdoor’s pattern, “Ahhhh My Mouth Is
Open.” In Snort, about 87% of rules belong to this type. The
second type consists of metacharacters such as anchor (and $),
alternation , and quantifier (* and ?). For example, the rule
for detecting the Oracle Web Cache attack is written as

The string “ ” in the “pcre” field represents a com-
plex pattern, where “ ” denotes “the beginning of a line,” and
the “ ” denotes that the successive 432 characters
after “ ” cannot contain “ .” The Snort has about 1777 rules
for detecting a variety of attacks and probes, such as buffer over-
flows, stealth port scans, CGI attacks, SMB probes, and OS fin-
gerprinting attempts.

Given a regular expression , we say
a partial expression, is a prefix of if , a
partial expression, is an infix of if and

, and a partial expression is a suffix of
if . For example, let the expression be “networking.”

The partial expression “net” is a prefix, “work” is an infix, and
“ing” is a suffix of .

IV. MINIMIZATION OF REGULAR EXPRESSION CIRCUITS

Among a set of regular expressions, there may exist common
subexpressions. If the common subexpression is a prefix, [2]
shows a way to share prefix subexpressions. However, there
exist more opportunities in sharing common infixes and suffixes
but they require more complex consideration than the sharing
of common prefixes. In the introduction, we have shown the
difficulty of sharing common infixes. The difficulty is mainly
due to the needs to differentiate which attack’s regular expres-
sion is matched. In other words, we need to know exactly which
regular expression of attack is matched. In Section IV-A, we
first describe the issue incurred by directly sharing common suf-
fixes. In Section IV-B, we propose a new architecture which can
share common infixes and suffixes without the differentiation
problem. However, the new architecture creates a new problem
called the critical section problem. In Section IV-C, we will dis-
cuss in detail how the critical-section problem occurs, and also
our approach to prevent the critical-section problem.

A. Sharing Common Suffixes

Consider two regular expressions “PassWinDirUserGate”
and “MainSysRootNetGate,” and both of which have the
common suffixes “Gate.” A direct but erroneous implementa-
tion is to share the hardware block for recognizing “Gate” in
Fig. 4. The main problem is that when the output of last block

Fig. 4. Erroneous implementation to share the common suffix “Gate.”

Fig. 5. Sharing architecture for infix and suffix.

is asserted, there is no way to differentiate which virus regular
expression is matched by only one output. This is similar to the
differentiation problem when sharing common infixes directly.

B. Novel Sharing Architecture

In this section, we propose a new sharing architecture
to resolve the differentiation problem. Consider regular
expressions which all have a common infix . The reg-
ular expressions can be represented as concatenation forms,

, and . In Fig. 5, the switch
module in parallel with the common infix is used to
memorize which prefix triggers the infix , and the DeMux
(demultiplexer) is used to guide the output of to trigger the
corresponding successive blocks.

We now illustrate the sharing architecture using an example.
Given two regular expressions with a common infix in Fig. 6,
the switch module can be implemented by a JK flip-flop. The
outputs of prefix blocks and are connected to the inputs
of the JK flip flop. When the is matched and its output is
asserted a cycle to trigger the via the OR gate, the JK flip
flop will memorize this state because and , the
output , the output . The state will be kept even
the output of the is restored to 0 afterward. As and

, the output of will be guided to trigger the succes-
sive via the DeMux. In contrast, the JK flip flop will guide
the output of to trigger the successive if the triggered
the . Note that the prefix blocks, and , cannot trigger
the shared block simultaneously. Otherwise the outputs of
JK flip-flop will be complemented each cycle and the may
trigger a wrong successive block. By applying the new sharing
architecture, the shared block can trigger the proper successive
block according to the storage of switch module, preventing the
differentiation problem caused by directly sharing common in-
fixes. Similarly, the new sharing architecture can support the
sharing of common suffixes.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 7, 2008 at 23:38 from IEEE Xplore. Restrictions apply.

1306 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 12, DECEMBER 2007

Fig. 6. Two patterns share common infix R .

Fig. 7. Example of critical section problem.

C. Critical-Section Problem in the Sharing Architecture

In Fig. 6, whenever a prefix block, block, or block
completes the matching of a subexpression, its output will
trigger the shared block via the OR gate. Note that the
shared block may require more than one cycle to process
its expression matching. During the process, it is possible that

is triggered again. Since the switch module only memorizes
one and the only one triggering source, it is important that other
prefix blocks cannot trigger the shared block until the shared
block completes the expression matching. This is similar to
the critical section problem in the operating system, where the
critical section can only be entered once.

Fig. 7 shows an example of two patterns, “abcdefgh” and
“dedefpq,” using our sharing architecture to share the common
infix “def.” Supposing a string “abcdefgh” is fed into the circuit,
the circuit should identify that the string is matched with the pat-
tern “abcdefgh.” But, it fails because when the string “abc” is
fed, the prefix “abc” is matched and the critical section “def”
is triggered first while the switch module memorizes the source
of triggering signal comes from the prefix “abc.” Then, when
the string “de” is fed, the prefix “de” is matched and the critical
section is retriggered while the shared block does not complete
expression matching yet. The retriggering to the critical section
will complement the state of switch module and cause the output
of “def” to trigger “pq.” In other words, the retriggering to the
shared block leads to the failure of matching the successive “gh”
correctly. We can see that the two triggers of “de” are not mutual

exclusive in time and the critical section problem arises. There-
fore, when similar patterns like this example are detected, our
algorithm will avoid the sharing of the common parts to prevent
critical section problem.

Some shared blocks may have the critical section problem
while unshared blocks do not have. One way to prevent the
critical section problem is to avoid the sharing when it is pos-
sible to have the critical section problem. In the following the-
orem, we show a necessary condition for the critical section
problem. Therefore, we can safely share the common subex-
pressions without the critical section problem if the necessary
condition does not satisfy.

Definition: An expression, is called the cross-subexpres-
sion of if is not a subexpression of and is a
subexpression of .

For example, given two expressions “abc” and
“def,” expression “cd” is a cross-subexpression of be-
cause “cd” is not a subexpression of “abc,” but a subexpression
of “abcdef.” Similarly, expressions “cde,” “cdef,” “bcd,” “bcde,”
and “bcdef” are all cross-subexpressions of and .

Let be a common subexpression of two regular expres-
sions and .

Theorem: If has the critical section problem, either is
a cross-subexpression of , or is a cross-subexpression
of .

Proof: The critical section problem arises when the shared
block is triggered again before completing the expression
matching. Suppose the shared block is triggered because earlier
inputs matched to and is currently processed to check if
subsequent inputs are matched to . In order for the shared
block to be triggered by must be a cross-subexpression
of . Similarly, supposing the shared block is triggered by

and is currently processed to check if subsequent inputs
matched to . In order for the shared block to be triggered by

must be a cross-subexpression of . As long as
or is a cross-subexpression, the critical section problem will
happen.

V. REGULAR EXPRESSION TO NFA
HARDWARE IMPLEMENTATION

In this section, we describe the hardware implementation of
a regular expression. The NFA approach [1] has shown four
basic NFA components: single-character matcher, concatena-
tion, union , and Kleene-star (*) in Fig. 8. The hardware for
matching a normal regular expression can be constructed by
connecting the four basic NFA components. In order to support
the regular expression patterns of Snort [11] and Trend Micro,
we develop another five NFA basic components to support Perl-
compatible regular expressions (PCRE), as shown in Fig. 9.
These components include any-character matcher , comple-
menting-character matcher , question mark quantifier (?), plus
quantifier , and dollar sign anchor ($). The any-character
matcher is used to match any input character [see Fig. 9(a)]. The
complementing-character matcher is used to match the charac-
ters outside of a range by complementing the set [see Fig. 9(c)].
Similarly, given a regular expression matches any string
composed of zero or one occurrences of [see Fig. 9(b)].
matches any string composed of one or more occurrences of

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 7, 2008 at 23:38 from IEEE Xplore. Restrictions apply.

LIN et al.: OPTIMIZATION OF PATTERN MATCHING CIRCUITS FOR REGULAR EXPRESSION ON FPGA 1307

Fig. 8. Four basic NFA components [1]: (a) single-character; (b) concatenation;
(c) union; (d) kleene-star.

Fig. 9. New NFA components to support PCRE: (a) any-character matcher
(�); (b) questionmark (?) quantifier (dashed box); (c) complemting-character
(̂) matcher; (d) plus quantifier (+) (dashed box).

[see Fig. 9(d)]. The dollar sign anchor ($) is used to match the
end of a line, of which the ASCII code is hexadecimal 0D or
0A [see Fig. 9(e)]. Most of the regular expression patterns in
the Snort and Trend Micro pattern databases can be constructed
with these basic components. For example, the NFA circuit con-
structed form the regular expression, ab? , is shown in
Fig. 10.

VI. REGULAR EXPRESSION MODULE GENERATOR

In order to automatically extract and share the common subex-
pressions and convert them to NFA hardware components, we
develop a regular expression module generator that can explore

Fig. 10. Implementation of NFA for ab? �[c]d+.

Fig. 11. Flow of regular expression module generation.

the sharing of common prefix, infix, and suffix subexpressions.
The flow diagram of our generator is shown in Fig. 11. In the
first stage, we obtain regular expression patterns from the pattern
database. Then in second stage, common prefix subexpressions
are shared directly. In the third and fourth stages, we recursively
extract one common infix or suffix subexpression which has the
largest sharing gain defined as follows. The sharing gain of a
common subexpression is defined to be the number of characters
in the subexpression multiplies by the number of regular expres-
sions having that subexpression. For example, three regular ex-
pressions, “1Common1,” “2Common2,” and “3Common3” have
the common subexpression “Common.” The sharing gain of the
common subexpression is because “Common” has
6 characters and the number of regular expressions is 3. In our
experiment, because the sharing also has hardware overhead, we
heuristically fine-tune the sharing gain according to the results
of area. The stages three and four continue until no common

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 7, 2008 at 23:38 from IEEE Xplore. Restrictions apply.

1308 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 12, DECEMBER 2007

TABLE I
EXPERIMENTAL RESULTS AMONG DIFFERENT APPROACHES ON SNORT RULE SETS

TABLE II
EXPERIMENTAL RESULTS AMONG DIFFERENT APPROACHES ON TREND MICRO RULE SETS

subexpression can be shared. Note that a shared common sub-
expression must not cause the critical section problem described
in Section IV-C. In the final stage, we convert the regular expres-
sion patterns to the NFA hardware components.

VII. EXPERIMENTAL RESULTS

We implement the algorithm shown in Fig. 11 and apply to the
regular expression patterns from Snort and an industry company,
Trend Micro. The results are compared with the approaches of
sharing only common prefixes as in [2] and sharing decoder
[3], [4]. All circuits are synthesized by the commercial tool,
Synplify Pro 7.7.1 and placed and routed by Xilinx ISE 8.1i,
where the target FPGA is Xilinx Virtex2 XC2V6000 consisting
of 33 792 slices.

In addition to total rules of Snort, we also implemented six
different approaches on the largest eight subsets of regular ex-

pressions from Snort and three sets from Trend Micro for our
experiments. The first approach is the traditional NFA approach
[1]. The second proposed in [2] extended the first approach by
adding a prefix tree to share common prefixes. The third is to
share character decoder, called “decoder” approach [3]. The
fourth is to share character decoder with prefix tree, called “de-
coder tree” approach [3]. The fifth is based on our original algo-
rithm and the sixth is an integration of our algorithm and “de-
coder tree” approach, called integration approach.

Table I lists the comparison of characters, area, and delay
among different approaches on Snort rule sets, and Table II on
industrial rule sets of Trend Micro. The name of the set and the
number of characters are shown in the first and second columns.
The number of area, character per slice, and minimum period of
original circuit are shown in the third, fourth, and fifth columns.
The results of sharing common prefixes [2] are shown in the

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 7, 2008 at 23:38 from IEEE Xplore. Restrictions apply.

LIN et al.: OPTIMIZATION OF PATTERN MATCHING CIRCUITS FOR REGULAR EXPRESSION ON FPGA 1309

sixth, seventh, and eighth columns. The results of “decoder” ap-
proach are shown in the ninth, tenth, and eleventh columns. The
results of “decoder tree” approach are shown in the twelfth, thir-
teenth, and fourteenth columns. The results of our sharing ar-
chitecture are shown in the fifteenth, sixteenth, and seventeenth
columns. Finally, we apply the integration approach to the same
rule set and report the number of area, character per slice, min-
imum period, and throughput in the last four columns. For ex-
ample in the first row of Table I, the Snort Oracle rule set has
4674 characters. The area of the original design on FPGA is
1210 slices and the character per slice is 3.9. The minimum pe-
riod after place and route process is 9.84 ns. Applying the tech-
nique of sharing common prefixes [2], the area, character per
slice, and minimum period are reduced to 1185, 3.9 slices, and
8.75 ns. Applying the “decoder” approach, the area, character
per slice, and minimum period are 1313 slices, 3.5 and 7.97 ns.
Applying the “decoder tree” approach, the area, character per
slice, and minimum period are 1294 slices, 3.6, and 7.87 ns. Ap-
plying our sharing architecture, the area, character per slice, and
minimum period are 898 slices, 5.2, and 8.11 ns. By integrating
our sharing architecture with the “decoder tree” approach, the
area, character per slice, minimum period, and throughput are
995 slices, 4.7, 6.18 ns, and 1294 Mb/s.

The experimental results show that the integration approach
on the Snort rule sets can achieve an average of 28% in area re-
duction and the reduction is 38% on industrial rule sets of Trend
Micro. The integration approach has the best area reduction than
previous approaches. The results show that our approach is very
efficient when combined with the predecoding approach for the
area minimization.

Furthermore, although our approach is aimed at optimizing
the area on FPGA, the circuit delay is also improved because
the sharing architecture can reduce the fan-out load of the pay-
load input and alleviate the routing complexity. The integration
approach achieves an average of 22% in delay reduction both
on Snort rule sets and industrial rule sets of Trend Micro.

VIII. CONCLUSION

Regular expressions are widely used in the NIDS to represent
attack patterns. To accommodate a large number of regular ex-
pressions to FPGAs, the area reduction of the pattern matching
circuits is very important. In this paper, we present a novel
sharing architecture allowing our algorithm to extract and share
common prefixes, infixes, and suffixes. Under specific condi-
tion, both the common infix and suffix subexpressions can be
extracted and shared effectively. Additionally, in order to sup-
port Perl-compatible regular expressions (PCRE), we also de-
veloped five important NFA components. An automatic genera-
tion tool is also presented to cost-effectively extract the common
subexpressions for FPGA implementation. The experimental re-
sults show that our sharing architecture can significantly reduce
the area of the pattern matching circuits both for the Snort and
industrial realistic regular expression rule sets. In addition, the
results show that our approach is very efficient when combined
with the predecoding approach for the area minimization.

Moreover, because our sharing architecture can effectively re-
duce the fan-out load of the text inputs and alleviate the routing
complexity, the circuit delay is also improved a lot.

ACKNOWLEDGMENT

The authors would like to thank the following experts of the
Trend Micro Inc., M. Deng (Group Project Manager), S. Chin
(Project Manager), C. Lo (QA Manager), V. Lo (Development
Manager), K. Kuo (Development Manager), V. Ho (Sr. Engi-
neer), P. Chiang (Project Lead), R. Mier (QA Project Lead), and
K. Chiang (Engineer) for their constructive inputs.

REFERENCES

[1] R. Sidhu and V. K. Prasanna, “Fast regular expression matching
using FPGAs,” in Proc. 9th Ann. IEEE Symp. Field-Program. Custom
Comput. Mach. (FCCM), 2001, pp. 227–238.

[2] B. L. Hutchings, R. Franklin, and D. Carver, “Assisting network in-
trusion detection with reconfigurable hardware,” in Proc. 10th Ann.
IEEE Symp. Field-Program. Custom Comput. Mach. (FCCM), 2002,
pp. 111–120.

[3] C. R. Clark and D. E. Schimmel, “Efficient reconfigurable logic circuits
for matching complex network intrusion detection patterns,” in Proc.
11th ACM/SIGDA Int. Conf. Field-Program. Logic Appl. (FPL), 2003,
pp. 956–959.

[4] C. R. Clark and D. E. Schimmel, “Scalable parallel pattern matching on
high speed networks,” in Proc. 12th Ann. IEEE Symp. Field Program.
Custom Comput. Mach. (FCCM), 2004, pp. 249–257.

[5] Y. H. Cho, S. Navab, and W. H. Mangione-Smith, “Specialized hard-
ware for deep network packet filtering,” in Proc. 10th ACM/SIGDA Int.
Conf. Field-Program. Logic Appl. (FPL), 2002, pp. 452–461.

[6] Y. Cho and W. H. M. Smith, “Deep packet filter with dedicated logic
and read only memories,” in Proc. 12th Ann. IEEE Symp. Field Pro-
gram. Custom Comput. Mach. (FCCM), 2004, pp. 125–134.

[7] Z. K. Baker and V. K. Prasanna, “A methodology for the synthesis of
efficient intrusion detection systems on FPGAs,” in Proc. 12th Ann.
IEEE Symp. Field Program. Custom Comput. Mach. (FCCM), 2004,
pp. 135–144.

[8] Z. K. Baker and V. K. Prasanna, “High-throughput Linked-Pattern
Matching for Intrusion Detection System,” in Proc. Symp. Architecture
Netw. Commun. Syst., 2005, pp. 193–202.

[9] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, “Implementation
of a Content-Scanning Module for an Internet Firewall,” in Proc. 11th
Ann. IEEE Symp. Field-Program. Custom Comput. Mach. (FCCM),
2003, pp. 31–38.

[10] Z. K. Baker and V. K. Prasanna, “Time and area efficient pattern
matching on FPGAs,” in Proc. ACM/SIGDA 12th Int. Symp. Field
Program. Gate Arrays, 2004, pp. 223–232.

[11] M. Roesch, “Snort- lightweight Intrusion detection for networks,” in
Proc. 15th Syst. Administration Conf. (LISA), 1999, pp. 229–238.

[12] I. Sourdis and D. Pnevmatikatos, “Fast, large-scale string match for a
10 Gbps FPGA-based network intrusion detection system,” in Proc.
11th ACM/SIGDA Int. Conf. Field-Program. Logic Appl. (FPL), 2003,
pp. 880–889.

[13] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and V.
Hogsett, “Granidt: Towards gigabit rate network intrusion detection,”
in Proc. 12th Ann. ACM/SIGDA Int. Conf. Field-Program. Logic Appl.
(FPL), 2002, pp. 404–413.

[14] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for efficient and
high-speed NIDS pattern matching,” in Proc. 12th Ann. IEEE Symp.
Field Program. Custom Comput. Mach. (FCCM), 2004, pp. 258–267.

[15] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packet pattern-
matching using TCAM,” in Proc.12th IEEE Int. Conf. Netw. Protocols
(ICNP), 2004, pp. 174–183.

[16] J. Moscola, Y. H. Cho, and J. W. Lockwood, “Implementation of net-
work application layer parser for multiple TCP/IP flows in reconfig-
urable devices,” in Proc. 16th Int. Conf. Field Program. Logic Appl.
(FPL), 2006, pp. 1–4.

[17] Y. H. Cho and W. H. Mangione-Smith, “ pattern matching co-processor
for network security,” in Proc. 42nd Des. Autom. Conf. (DAC), 2005,
pp. 234–239.

[18] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,
“Deep packet inspection using parallel bloom filters,” in Proc. 11th
Symp. High Performance Interconnects, 2003, pp. 44–53.

[19] J. W. Lockwood, J. Moscola, M. Kulig, D. Reddick, and T. Brooks, “In-
ternet worm and virus protection in dynamically reconfigurable hard-
ware,” in Proc. Military Aerosp. Program. Logic Device (MAPLD),
2003, p. E10.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 7, 2008 at 23:38 from IEEE Xplore. Restrictions apply.

1310 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 12, DECEMBER 2007

Cheng-Hung Lin (S’06) received the B.S. and M.S.
degrees in industrial technology education from Na-
tional Taiwan Normal University, Taiwan, R.O.C.,
in 1994 and 1997, respectively. He is currently
pursuing the Ph.D. degree in computer science from
the National Tsing Hua University, Hsinchu, Taiwan,
R.O.C.

His current research interests include network in-
trusion detection and related computer-aided design
(CAD) techniques.

Chih-Tsun Huang (S’98–M’01) received the Ph.D.
degree in electrical engineering from the National
Tsing Hua University (NTHU), Hsinchu, Taiwan,
R.O.C., in 2000.

He is currently an Assistant Professor with the
Department of Computer Science, NTHU, where has
been since 2004. His research interests include secu-
rity and error-correction VLSI designs, core-based
SOC/IP designs, VLSI/SOC design and test, and
embedded memory testing and repair.

Prof. Huang was a recipient of the Best Paper
Award of the 2003 IEEE Asia and South Pacific Design Automation Conference
(ASP-DAC) and the Special Feature Award of the 2003 ASP-DAC University
LSI Design Contest.

Chang-Ping Jiang received the B.S. and M.S. de-
grees in computer science from the National Tsing
Hua University, Hsinchu, Taiwan, R.O.C., in 2004
and 2006, respectively.

In 2006, he joined the Springsoft, Inc, Taiwan,
R.O.C., where he is currently an Engineer with the
Research and Development Group 1. His research
interests include network intrusion detection, pattern
matching circuit, and related computer-aided design
(CAD) techniques.

Shih-Chieh Chang (S’92–M’95) received the B.S.
degree in electrical engineering from the National
Taiwan University, Taiwan, R.O.C., in 1987, and
the Ph.D. degree in electrical engineering from the
University of California, Santa Barbara, in 1994.

He is currently a Professor and Vice Chairman with
the Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan, R.O.C. From 1995
to 1996, he worked with Synopsys, Inc., Mountain
View, CA. From 1996 to 2001, he joined the faculty
with the Department of Computer Science and Infor-

mation Engineering, National Chung Cheng University, Chiayi, Taiwan, R.O.C.
His current research interests include logic synthesis, functional verification for
SoC, and noise analysis.

Dr. Chang was a recipient of a Best Paper Award at the 1994 Design Automa-
tion Conference.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 7, 2008 at 23:38 from IEEE Xplore. Restrictions apply.

